Praktikumsblatt #3

Abgabe bis zum 18.01.2013

(Quelle: Prof. Schwenkert Script)

18. Ein international tätiges amerikanisches Unternehmen verwaltet seine Daten in den Tabellen S (Lieferantendaten), P (Teiledaten), J (Projektdaten) und SPJ (Lieferdaten), die im Anhang B zu finden sind. Formulieren Sie die folgenden Anfragen mit Hilfe der Relationenalgebra:

a) Finde die Nummern der Lieferanten, die keine Teile liefern.

b) Finde die Nummern der Lieferanten, die Teile mit den Nummern "P1" oder "P2" liefern.

c) Finde die Projektnummern der Projekte, die keinen Lieferanten (aktiv oder passiv) am Ort haben.

d) Finde die Lieferantenamen der Lieferanten, die das Projekt mit der Nummer "J1" beliefert haben.

e) Finde die Projektnummern der Projekte, die am gleichen Ort sind wie das Projekt mit der Nummer "J3".

f) Finde die Lieferantennummern der Lieferanten, die mindestens die Teile mit den Teilenummern "P1" und "P6" liefern.
30. Welche Ergebnisse liefern die folgenden Anfragen an die SPJ-Datenbank (siehe Aufgabe 18) ? Beschreiben Sie diese verbal, d.h. in natürlichsprachlichen Formulierungen ohne technische DB-Details. Begründen Sie Ihre Antworten ausreichend!

a) SELECT COUNT(DISTINCT PNO)
 FROM SPJ;

b) SELECT SUM(QTY)/COUNT(DISTINCT PNO)
 FROM SPJ;

c) SELECT PNO, SUM(QTY), SUM(QTY)/COUNT(DISTINCT PNO)
 FROM SPJ
 GROUP BY PNO

d) SELECT PNO, SUM(QTY)
 FROM SPJ
 GROUP BY PNO
 HAVING SUM(QTY)>(SUM(QTY)/COUNT(DISTINCT PNO));

e) SELECT PNO, MAX(QTY)
 FROM SPJ;

a) Liste für jedes gelieferte Teil seine Teilenummer, seine Gesamtlifermenge und seine durchschnittliche Gesamtlifermenge.

b) Liste für jedes vom Lieferanten "S1" gelieferte Teil seine Teilenummer und seine minimale sowie maximale Liefermenge.

c) Liste die Teilenummer und die Gesamtlifermenge für jedes Teil, dessen Gesamtlifermenge größer als 1000 ist.

d) Liste für jedes Teil pro Lieferant die Gesamtlifermenge.

e) Liste die Teilenummer und die Gesamtlifermenge für jedes Teil, dessen Gesamtlifermenge größer als die durchschnittliche Gesamtlifermenge aller gelieferten Teile ist.

32. Fügen Sie der SPJ-Datenbank den Lieferanten "Stewart" mit der Nummer "S6" hinzu, wobei Status und Stadt unbekannt seien.

a) Ermitteln Sie alle Lieferanten, deren Stadt unbekannt ist.

b) Wie viele Lieferanten sind derzeit mit Sicherheit nicht in London niedergelassen?

c) Begründen Sie die Ergebnisse nachfolgender Abfragen:

SELECT COUNT(CITY)
FROM S
WHERE CITY IS NULL;

SELECT COUNT(*)
FROM S
WHERE CITY IS NULL;

SELECT COUNT(SNAME)
FROM S
WHERE CITY IS NULL;
d) Ermitteln und begründen Sie die Ergebnisse folgender Abfragen:
 i.

   ```sql
   SELECT SNO
   FROM S
   WHERE CITY IN (SELECT CITY FROM J WHERE JNO='J0');
   ```

 ii.

   ```sql
   SELECT JNAME
   FROM J
   WHERE CITY NOT IN (SELECT CITY FROM S);
   ```

e) Ermitteln Sie alle Projekte, die keinen Lieferanten in ihrer Stadt haben.

f) Wird der Befehl "DELETE FROM S WHERE CITY=NULL" vom System akzeptiert? Löschen Sie den Lieferanten "S6" wieder, ohne die Attribute SNO und NAME zu benutzen.

33. Gegeben sei die aus Aufgabe 18 bekannte SPJ-Datenbank. Geben Sie geschlossene SQL-Anfrage-Ausdrücke für die folgenden verbalen Anfrage-Ausdrücke an:
 a) Liste sämtliche Informationen von Projekten, die von Lieferant S1 beliefert werden oder das Teil P1 benutzen.
 b) Liste die Lieferantennummer und Teilenummer von allen Lieferanten und Teilen, die nicht in der gleichen Stadt lokalisiert sind.
 c) Liste die Lieferanten-, Teile- und Projektionen von allen Lieferanten, Teilen und Projekten, die in der gleichen Stadt lokalisiert sind.
 d) Liste die Lieferanten-, Teile- und Projektionen von allen Lieferanten, Teilen und Projekten, die alle drei nicht in der gleichen Stadt lokalisiert sind.
 e) Liste die Teilenummer von allen Teilen, die von einem Lieferanten in London geliefert werden.
 f) Liste die Teilenummer von allen Teilen, die von einem Lieferanten in London für ein Projekt in London geliefert werden.
 g) Liste alle Paare von Städten, so daß ein Lieferant in der ersten Stadt ein Projekt in der zweiten Stadt beliefert.
 h) Liste die Teilenummer von allen Teilen, die von einem Projekt in der gleichen Stadt benötigt werden, in der ein Lieferant für dieses Teil lokalisiert ist.
 i) Liste die Projektionen von Projekten, die von einem Lieferanten beliefert werden, der nicht in der gleichen Stadt lokalisiert ist wie das Projekt.
 j) Liste alle Paare von Teilen und von Teilen, die beide von einem Lieferanten geliefert werden.

34. Betrachten Sie die folgende Anfrage an die SPJ-Datenbank:

   ```sql
   SELECT CITY, SNAME, QTY
   FROM S, SPJ
   WHERE S.SNO=SPJ.SNO AND
   QTY = (SELECT MAX(QTY)
   FROM SPJ U, S V
   WHERE U.SNO=V.SNO AND V.CITY=S.CITY);
   ```
a) Um welche Art von Anfrage handelt es sich? Geben Sie das Ergebnis der Anfrage an und beschreiben Sie dieses verbal.

b) Warum ist der folgende SQL-Ausdruck nicht äquivalent zur obigen Anfrage?

\[
\text{SELECT CITY, SNAME, QTY} \\
\text{FROM S, SPJ} \\
\text{WHERE S.SNO=SPJ.SNO AND QTY = MAX(QTY)} \\
\text{GROUP BY CITY;}
\]

c) Formulieren Sie einen äquivalenten SQL-Ausdruck ohne Unterabfrage unter Benutzung einer temporären Datei.

35. Betrachten Sie folgende SQL-Anfrage-Ausdrücke mit EXISTS-Klausel an die SPJ-Datenbank.

a)
\[
\text{SELECT SNAME} \\
\text{FROM S} \\
\text{WHERE EXISTS} \\
(\text{SELECT *} \\
\text{FROM SPJ} \\
\text{WHERE SPJ.SNO=S.SNO});
\]

b)
\[
\text{SELECT SNAME} \\
\text{FROM S} \\
\text{WHERE NOT EXISTS} \\
(\text{SELECT *} \\
\text{FROM SPJ} \\
\text{WHERE SPJ.SNO=S.SNO});
\]

c)
\[
\text{SELECT SNAME} \\
\text{FROM S} \\
\text{WHERE NOT EXISTS} \\
(\text{SELECT *} \\
\text{FROM P} \\
\text{WHERE NOT EXISTS} \\
(\text{SELECT *} \\
\text{FROM SPJ} \\
\text{WHERE S.SNO=SPJ.SNO AND SPJ.PNO=P.PNO});
\]

a) Geben Sie für diese SQL-Anfrage-Ausdrücke "äquivalente" verbale Ausdrücke an und zeigen Sie das Ergebnis dieser Anfrage.

b) Geben Sie für diese SQL-Anfrage-Ausdrücke "äquivalente"
\textit{geschlossene} SQL-Anfrage-Ausdrücke ohne EXISTS-Klausel an. Verwenden Sie dabei auch \textbf{nicht} die Vergleichsoperatoren ">" und "<"!

c) Geben Sie für die beiden Anfragen
- Liste sämtliche Informationen aller Lieferanten, die ein Teil an Projekt "J1" liefern.
- Liste sämtliche Informationen aller Projekte, für die kein rotes Teil von einem Lieferanten aus London geliefert wird.

\textit{geschlossene} SQL-Anfrage-Ausdrücke mit EXISTS-Klausel an. Formulieren Sie alternativ \textit{geschlossene} SQL-Anfragen ohne EXISTS-Klausel, ">" sowie "<".
36. Geben Sie für die folgenden Anfragen "äquivalente" geschlossene SQL-Anfrage-Ausdrücke (unter Benutzung des ALL-Operators) an:
 a) Liste die Lieferanten-Nummer aller Lieferanten, die mindestens ein Teil in einer Menge liefern, die größer ist als jede Menge, in der der Lieferant 'S1' ein Teil liefert.
 b) Liste die Liefermengeneinheit (d.h. 100, 200, ..., 800), in der insgesamt die meisten Teile ausgeliefert wurden. (Hinweis: Antwort ist 500.)

 a) Erhöhe den Status um 5 bei allen Lieferanten, die mehr als 3 Lieferungen durchgeführt haben.
 b) Setze den Status aller Lieferanten S_i, $i \in \{1, \ldots, 5\}$ aus London auf $M_i/10$, wobei M_i die maximale Einzeliiefersummen von S_i ist.
 c) Füge der DB die folgende Änderungs-Tabelle CHG für Lieferantennummern hinzu:

<table>
<thead>
<tr>
<th>OLD</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>N1</td>
</tr>
<tr>
<td>S4</td>
<td>N4</td>
</tr>
</tbody>
</table>

Aktualisieren Sie mittels CHG die Tabelle S.

38. a) Der Projektleiter von Projekt "J1" benötigt eine Planungsdatei. Diese muß alle für sein Projekt relevanten Teilenummern mit Teilenamen und dazu jeweils die gelieferte Gesamtanzahl enthalten. Erstellen Sie mittels SQL eine adäquate Benutzersicht für den Projektleiter. Ist der von Ihnen erstellte View aktualisierbar (Begründung)?